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Determination of Loaded, Unloaded, and External
Quality Factors of a Dielectric Resonator
Coupled to a Microstrip Line

APS KHANNA aND Y. GARAULT

Abstract —In the case of a dielectric resonator coupled to a microstrip
line, the relations for the determination of unloaded, loaded, and external
quality factors, in terms of directly measurable reflection or transmission
coefficient at the resonant frequency, have been derived and represented
on the corresponding vectorial and scalar planes. Construction of a linear
frequency scale and a graphical method to accurately determine the un-
loaded Q from the loaded Q measurement presented.

1. INTRODUCTION

HE ADVENT OF temperature stable, high-Q and
low-loss ceramic materials has created a considerable
interest in the application of dielectric resonators in the
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Fig. 1. Dielectric resonator coupled to a microstrip line and its equiva-

lent circuit in symmetry plane PP’.

microwave integrated circuits [1]. The dielectric resonator
coupled to a microstrip line has been used for realizing a
number of stable oscillators [2]-[4] and filters [S]. Com-
plete characterization of a microstrip coupled dielectric
resonator (Fig. 1) is necessary for the analysis and synthe-
sis of these integrated circuits. Ginzton [6] introduced the

" plotting of loci of various quality factors and the construc-

tion of a linear frequency scale in the case of a single-port
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reflection mode resonant metallic cavity. Podcameni [7]
recently suggested a relation for the determination of un-
loaded Q@ of the dielectric resonator, using an indirect
method. In this paper, we present the necessary relations,
in terms of directly measurable quantities, to draw loci of
unloaded, loaded, and external quality factors, on the
impedance as well as on the transmittance plane, in the
case of a dielectric resonator coupled to a microstrip line
(Fig. 1). The construction of a linear frequency scale is
presented and a graphical method to accurately determine
the unloaded Q from the loaded Q measurement is given.

II. CouPLING FACTOR OF A DIELECTRIC RESONATOR
COUPLED TO A MICROSTRIP LINE

Equivalent circuit in the symmetry plane PP’ of a
TE, ,-mode cylindrical resonator, magnetically coupled to
a 50-Q microstrip line, under necessary shielding condi-
tions, is shown in Fig. 1 [5]. The coupling factor 8 is
defined as the ratio of the resonator coupled resistance R
at the resonant frequency to the resistance external to the
resonator or
S 11, 1- Szl0

1- S, S,

R R
=% 27,

ext

(1)

where S, and S, are the real quantities representing the
reflection and transmission coefficients respectively, at the
resonant frequency, in the same symmetry plane PP’ (Fig.
1).

The critical coupling (8=1) occurs when the power
dissipated in the resonator P, is equal to the power dis-
sipated in the external circuit, which is equally divided into
the power reflected to the generator (P, = 31210) and the
power transmitted to the load (P,=S3 ), ie., P,=P, =
P,/2. P;, P, and P, represent here the RF powers normal-
ized with respect to the incident power.

In the shielded resonator configuration, from the con-
servation of energy, power dissipated in the resonator
being given by

Pd=1“|S11012_|5210|2 (2)

the critical coupling corresponds to Sy, = 5,; = 0.5.

The coupling factor B is a function of the distance
between the dielectric resonator and the microstrip line
under fixed shielding conditions. 8 also relates the various
quality factors by the well-known relation

QuzQL(1+18)=BQex (3)

where Q,, O;, and Q. represent unloaded, loaded, and
external quality factor, respectively.

ITI. Loci oF UNLOADED, LOADED, AND EXTERNAL

QUALITY FACTORS

The aim is to draw the loci of the points, on the
impedance (S,,) and transmittance (S,,) planes, for the
frequency deviations corresponding to Q,,, Q;, and Q... In
Fig. 1, Z,, in the plane PP’ of the dielectric resonator is
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given by [5]
s @

where 0 = (f — f,)/f, is the normalized frequency devia-
tion.

Using (1) and (3) the normalized input impedance z,, =
Z.,/Z, can be written as

_ 28 _ 28
Zp =1+ 1+ j20,8 I+ 1+ ,20,(1+B)8
—1+—28 (5)

1Y 20.p5

The normalized frequency deviations corresponding to
various quality factors are given by

1 1
=t+-—, andf, ==+ . (6
20, 20 (©)
The impedance locus of Q,, for example, can be de-
termined by using (6) in (5), and is given by

2B

(zn)u =1+ 75

5 3,

oL
«“tag,

(7)

or using (1)

(z.). = 1 4 Sno
Fin)u I_SIIO_JI_SHO'

(8)

The corresponding reflection coefficient S); can be de-

termined from
S, = (Zin)u -1
1,7~
(Zin)u +1

to be

S“u= et /n” (1=510)
/SE =28, +2

The coupled dielectric resonator being a series impedance
in the equivalent circuit, the reflection and transmission
coefficients are related by [8]

S, +95,=1.

(9)

(10)

The relation for the Q, locus, in the transmittance (S,,)
plane, can now be obtained, using the above relation.

In general, Table I represents the relations for the loci of
various quality factors, for the reflection coefficient S,
and transmission coefficient S,, planes. Fig. 2(a) and (b)
represent these loci in addition to some impedance (S,,)
and transmittance (S,,) curves for various values of the
coupling factor 8 between the resonator and the microstrip
line. As an example, @, can be determined from

Qu=f0/(fl _fz)-

Care should be taken while making measurements using
the scalar network measurement system giving only the
modulus of reflection or transmission coefficients. It may
be noted, for example, that in the reflection coefficient
plane the Q, points are always 3 dB below their value at
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(b)

Fig. 2. Loci of Q,, @1, and Q,, on (a) reflection coefficient plane and
on (b) transmission coefficient plane. Reflection and transmission coef-
ficient curves for 8= 0.4, 1, and 4.

TABLE 1

REFLECTION COEFFICIENT Suy

152y ]

Su

TRANSMISSION
1Sy, |

COEFFICIENT Sy,
/51,

S 1, . 3 1= S,
Q | 77— |z tan 0 -5, 0}t Su + tan
NS 1+ S5, 1. s,.
2
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Sy - s,.,— 2521,+1
Qex Fe———= |+ tan S5, 2s) #1168, (Sanves), [ 2 tan —
K o s _ .
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the resonance frequency, while in the transmission coeffi-
cient plane Q; points are functions of the coupling factor
(or ;). Fig. 3(a) shows the @, and O, measurement
points in the reflection and transmission coefficient magni-
tude planes as a function of coupling factor B and Fig. 3(b)
represents various terms used in Fig. 3(a).

IV. CONSTRUCTION OF A LINEAR FREQUENCY
SCALE

For a given coupling factor B, a linear frequency scale is
obtained along the straight line AB drawn perpendicular to
the X-axis and passing through point F (Fig. 4).

The frequency deviation at any point R on the imped-
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Fig. 3. (a) Q, and Q; measurement points in the reflection and trans-
mission coefficient magnitude planes as a function of coupling factor 8
and (b) definition of various terms used.

Fig. 4. Construction of a linear frequency scale and determination of
unloaded Q from the loaded Q measurement.

ance locus can be shown to be proportional to the ordinate
of the intersection H of OR with 4B. The scale is estab-
lished from the measurement of frequencies at any two
points on the impedance locus.

Proof: OR being the reflection coefficient, from (5)

n—l
S |S11 |ejS“R_ +1
,(/3+1)2+49562
20,8
angle ROF = /S, = tan“(FQ_ﬁ). (12)
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The distance FH, being proportional to tan ZROF, is
hence directly proportional to the frequency 6.

V. GRrAPHICAL METHOD TO DETERMINE UNLOADED
O FroM THE LOADED ) MEASUREMENT

Unloaded quality factor of a shielded dielectric resona-
tor being high, its manual direct measurement can cause
considerable errors [7]. @, can, however, be accurately
determined from the measurement of Q; only, with the
help of a simple graphical method using a Smith chart.
This is possible because it can be shown that the Q; point
P (Fig. 4) when jointed to F, intersects the impedance locus
at the point N which corresponds to Q,,. To prove this, it is
sufficient to show that the angle PFO is the same as angle
NFO (Fig. 4). Using the values given in Table I we have

In triangle OPF:

angle POF = 45°
OP=S,, /V2.
Drawing PL perpendicular to OF
OL=PL=S§,,/2
and LF=1-§,, /2.

Hence, angle PFO = tan™" % =tan~! >——.

Iﬁ triangle ONF:
From Table 1

angle NOF = tan_l(l - Sno) =40,
Si1,

1/S1210—2S“0+2

Drawing NM perpendicular to OF

and ON =

NM = ONsiné,
OM = ONcosd,
and MF=1- ONcos#@,
NM ONsind
— -1 -\ _— "
angle NFO = tan ME tan T— ONcos,
Si
= tan~! >
2-8y,

Hence, angle Z NFO is the same as angle £ PFO.

Once the point N is determined, the corresponding
frequency, and hence Q,,, can be evaluated accurately. The
Q, determined experimentally using this method did not
show more than + 1 percent variation for various values of
coupling factor 8.
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